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Abstract: Effect of vacancy formation energy and microhardness on the Debye temperature of some α-phase alloys have 

been carried out on α-phase (fcc phase) Cu1-x-Znx alloys. The Debye temperatures of α-phase Cu1-x-Znx alloys have been 

obtained from X- ray integrated intensities. The integrated intensities have been measured with a Philips 3020 powder 

diffractometer fitted with a proportional counter using filtered CuKα radiation at room temperature and have been corrected for 

thermal diffuse scattering. The Debye temperatures of these alloys have been estimated from the hardness and are compared 

with those obtained from specific heats, elastic constants and X-ray intensity measurements. 
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1. Introduction 

An alloy is a combination of two or more elements that 

results in a substance possessing metallic properties. 

Elements may combine to form alloys by completely 

dissolving in each other. The atoms of one element become a 

part of the space lattice of the other element, thus forming 

solid solution. If solute atoms take the place of some of the 

solvent atoms at lattice sites, it is called a substitutional solid 

solution. A substitutional solid solution is generally formed if 

the metallic elements are combined. If the solute atoms 

occupy positions between the lattice sites of the solvent, it is 

called an interstitial solid solution. Non-metallic elements 

such as hydrogen, carbon, nitrogen, boron and oxygen form 

interstitial solid solutions in many of the metals. The 

solubility of one element in another is governed by three 

factors.  

They are: 

(i) relative atomic diameters of solvent and solute atoms 

(ii) relative electro negativities of solvent and solute atoms 

(iii) relative valence of solvent and solute atoms.  

The extent of formation of solid solutions depends on the 

difference in atomic diameters. It is more favorable when the 

difference in the atomic diameters of solute and solvent 

atoms is less than 14 or 15 per cent. The solubility may be 

limited if the solute and the solvent atoms have large 

differences in electro negativities. According to the third 

factor, a metal of higher valence is more likely to be soluble 

in a metal of lower valence than the reverse. In addition to 

the three factors discussed above, the solubility in the 

formation of a solid solution tends to be favoured when the 

crystal structure of the two metals are of the same type. 

A systematic X-ray investigation of vacancy formation 

energy, microhardness and Debye temperatures of Cu1-x-Znx 

alloys have been discussed in the following sections. 

Abrahms and Hsu [1] showed empirically that the Debye 

temperature of solids can be estimated from the 

microhardness. Recently osmium received considerable 

attention because of its remarkable properties. Pantea et al [2, 

3] measured elastic constants of osmium and calculated its 

Debye temperature from low-temperature elastic constants 

also discussed in the values of Debye temperature of osmium 

obtained from various methods. Denge et al [4] reported the 

values of Debye temperature at calculated from theoretically 

obtained elastic constants data at different applied pressures. 

Hardness is defined as the resistance offered by the lattice to 

the motion of dislocations. Hardness is an important solid 

state property. The chemical forces in a crystal resist the 

motion of dislocations as it involves the displacement of 

atoms. This resistance is the intrinsic hardness of a crystal. 

The hardness can thus be correlated with the strength of 

interatomic binding in crystals. It correlates with other 
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strength dependent parameters like lattice constant, the lattice 

energy and the elastic properties. 

2. Experimental 

Cu1-x Znx alloys with different compositions were prepared 

from spectroscopically pure Cu and Zn metals by melting 

appropriate quantities in evacuated quartz tubes. During the 

process of melting the mixture was thoroughly stirred for 

homogenization. The final compositions have been arrived at 

after subjecting these alloys to spectroscopic analysis. The 

powder samples of all the alloys were obtained by gently 

filing the ingots with jeweller’s file. The filings were passed 

through a 325 mesh screen. All the samples were annealed 

before making measurements. 

X-ray measurements were made with a Philips 3020 

diffractometer fitted with a proportional counter using 

Cukα  radiation. The X-ray tube was operated at 40Kv and 

25mA. All measurements were made at room temperature. 

The XRD patterns of (fast scans) Cu1-x Znx alloys are 

reproduced just to show that only the reflections due to the 

α−phase persist in the alloy diffractogram. The number of 

reflections ranged from 11 to 13. For the purpose of 

measurements of intensities, slow scans were obtained at a 

scanning speed of 0.5° per minute. The integrated 

intensities have been corrected for thermal diffuse 

scattering using the method of Chipman and Paskin. The 

absorption correction for a flat sample is angle independent 

and hence can be included in the scale factor. The porosity 

effect can also be lumped with the scale factor. The surface 

roughness effect becomes significant only at 2θ<20°; the 

reflections used in these studies have 2θ>20°. The Hardness 

and Debye temperatures were determined following 

standard procedures. 

3. Method of Analysis 

3.1. Debye Tempetature  

For the relative intensity method, the expression for the 

observed intensities I0 is given by  

I0 = CLpJFT
2
                               (1) 

where Lp is the Lorentz-polarization factor, J, the multiplicity 

factor, FT the structure factor and C is a constant. For a flat 

powder specimen, the absorption correction is independent of 

the angle θ, and, hence, is lumped with the constant. The 

structure factor FT in terms of the structure factor F for the 

static lattice is given by  

FT = Fe
-M

                                       (2) 

We may also write Eq. (1) as  

I0 = 
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The structure factors for fcc lattice is given by 

F2 = 16f2 for h, k, l are all even 

F2 = 16f2 for h, k, l are all odd                 (4) 

F2 = 0 for h, k, l mixed 

Where f is the atomic scattering factor. For the Cu1-x Znx 

alloy, 

<f> = XCu fCu + XZn fZn                           (5) 

Where XCu, XZn and fCu, fZn are the atomic concentrations 

and atomic scattering factors of Cu and Zn respectively. 

Values of the atomic scattering factor were taken from 

Cromer and Waber and International Tables for X-ray 

Crystallography, and have been corrected for dispersion.  

From Eq. (3) it can be seen that log (I0/Ic) is linearly 

related to (sin θ/ λ)
2
. By a least square treatment of data, B 

was determined. From the Debye-Waller theory 
 

B = 













3

8 2π
<u2>                              (6) 

for a cubic crystal, where <u
2
> is the mean-square amplitude 

of vibration. Further, B, may also be expressed as 
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where m is the mass, T the absolute temperature and h and kB 

are the Planck and the Boltzmann constants respectively. The 

function W (x) is given by  

W (x) = 
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xx
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φ
                      (8) 

where ø (x) is the Debye function and x= θM/T, θM being the 

Debye temperature. 

3.2. Hardness 

Hardness measurements were carried out with a hardness 

tester fitted with Vicker’s pyramidal indenter. The diagonal 

length of the impression is measured with a digital read out. 

Microhardness shows load dependence at low loads and 

becomes load independent at slightly higher loads. Generally 

the load independence starts around 50 gms. In order to 

obtain load independent results measurements on all samples 

were carried out at different loads up to 120 grams. The 

hardness is calculated from the formula, 

H = 1.854 P/d
2
                               (9) 

where P is the load in grams and d is the diagonal length in 

microns. In general, hardness falls as load increases (at low 

loads) and beyond 50 gms the load dependence is negligible. 

In all the cases the hardness value at 120 gms is taken as the 

true microhardness. 
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4. Results and Discussion 

The Debye temperature of a solid can be calculated from 

the formula 

θψ = CV
1/6

M
-1/2ψ−1/2

                         (10) 

Plendl et al [5] have pointed out that the microhardness 

(H) of a solid is dimensionally reciprocal to the 

compressibility and for isostructural material ψ is 

proportional to H
-1

. Substituting for ψ in Eq. 10, the 

following relation is obtained for Debye temperature (θH) in 

terms of hardness  

θH = C
′
V

1/6
 M

-1/2
 Η1/2

                         (11) 

where C
′
 is a new proportionality constant. Abrahams and 

Hsu [1] verified this relation for several chalcopyrites and 

used the relation to estimate the Debye temperatures of some 

chalcopyrites for which the hardness was known and Debye 

temperatures by other methods were not available. Seigal [6] 

also used this relation to obtain the values of Debye 

temperatures of several carbides and nitrides of transition 

elements. Recently Gopi Krishna and Kishan Rao [7] and 

Shankarnarayana [8] verified this relation for severral hcp 

metals. 

In the present investigation measerements have been 

carried out on the micro- hardness of all the Cu1-x-Znx alloys. 

The motivation for this study is to verify the empirical 

method developed by Abraham and Hsu [1] for the 

calculation of Debye temperature from microhardness. It was 

felt that measurements of microhardness on Cu1-xZnx alloys, 

which have been used in the measurements of the X-ray 

Debye temperature, would help in verifying method of 

Abraham and Hsu [1]. 

The load variation of microhardness for Cu0.60-Zn99.60 alloy 

is shown in Figure 1. In all the cases the hardness decreases 

steeply as the load increases, but load variation becomes 

negligible above a load of 75gm. The values of hardness at a 

load of 120gm are given in Tables 1 for cubic phase. The 

Equation 3 has been tested on Cu1-x-Znx alloys by using the 

hardness data given in Table 1 and the data on Debye 

temperatures obtained in this work by the X-ray method. For 

this purpose the constant C
′ 
has been chosen to be 5×10

-7
. 

This value of the constant is used for calculating the Debye 

temperature of Cu1-x-Znx alloys from the microhardness data. 

These values are given in Tables 1 for fcc phase, in which are 

also included the X-ray values of Debye temperatures 

obtained in the present work for comparison. The 

microhardness values are also plotted against composition in 

Figure 2 for fcc phase alloys. The value of hardness for any 

material depends on the condition of the sample under which 

it is prepared, the impurity content present in the sample and 

the load at which the value of hardness is measured. All these 

factors contribute to the uncertainties in the value of the 

hardness. Considering these factors, there is very good 

agreement between the Debye temperature values calculated 

from the hardness and those obtained experimentally from X-

ray intensities. The hardness measurement is a simple test 

and it needs small-sized samples. Further, it is a non-

destructive measurement. The present calculations show that 

in alloy samples where only hardness measurements are 

available, a reasonable estimate of the Debye temperature 

can be made by using Equation 3. 

 

Figure 1. The load variation of micro hardness for Cu94.15 Zn5.85 alloys. 

 

Figure 2. Plots of micro hardness (H) vs composition (x) for fcc phase Cu1-x-

Znx system. 

According to the Kopp-Neumann relation, the Debye 

temperature of a binary alloy is given by  

-3
2

-3
1

-3 θxθx)1(θ +−=                      (12) 

where θ is the Debye temperature of the alloy containing an 

atomic concentration x of the solute; θ1, θ2 are the Debye 

temperatures respectively of the pure solvent metal and 

solute metal. The values of Debye temperature for the Cu1-x-

Znx alloys calculated from the Kopp-Neumann relation are 

included in table 1. The experimental values of of θM are 

systematically less than the calculated values of Debye 

temperature from Kopp-Neumann relation. This could be due 

to the fact that the Kopp-Neumann relation does not take into 

account the defect state of the sample under investigation. 

The values of vacancy formation energy are useful in 

understanding the diffusion mechanism in substitutional solid 

solutions as the vacancy mechanism is the dominant 

mechanism for diffusion in most pure metals and 

substitutional solid solutions. As such, an attempt has been 

made to estimate the values of energy of vacancy formation 

(Ef) for Cu1-x-Znx alloys. 

Glyde [9] derived the following relation between the 

energy of vacancy formation (Ef) and the Debye temperature 

(θ) of a solid;  

Ef = A (k/ħ)
2
 Mθ2

a
2
                       (13) 

a is the interatomic spacing, A a constant shown to be equal 
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to 1.17 x 10
-2

, M the atomic weight and h and k are the 

Plank’s and the Boltzmann’s constants respectively. Glyde 

[9] recommended the use of X-ray based values for use in 

Eq. (12). The validity of Eq. (12) was verified for a number 

of fcc, bcc and hcp metals [10-13]. Therefore, the X-ray 

Debye temperatures obtained in the present work have been 

used to estimate vacancy formation energies for Cu1-x-Znx 

alloys. The values estimated vacancy formation energies for 

Cu1-x-Znx alloys are also included in Table 1.  

Table 1. Values of hardness (H) and Debye temperature (θ) for some fcc phase Cu1-xZnx alloys. 

Alloy H (Kg/mm2 ) θθθθH (K) from Eq. (3)    θ   θ   θ   θM (K) θ (Κ) θ (Κ) θ (Κ) θ (Κ) From Kopp-Neumann relation Ef (eV) 

Cu94.15Zn5.85 48.34 310 306 305 1.662 

Cu91.25Zn8.75 49.74 307 303 296 1.519 

Cu84.35Zn15.65 51.62 302 299 289 1.442 

Cu81.45Zn18.55 52.48 300 292 282 1.340 

Cu74.55Zn25.45 53.26 295 286 275 1.251 

Cu71.50Zn28.50 55.23 291 281 270 1.176 

Cu64.65Zn35.35 64.12 273 276 264 1.104 

 

5. Conclusion 

The microhardness of fcc phase Cu1-x-Znx alloys has been 

measured. The Debye temperatures are calculated using the 

present hardness values and are compared with Debye 

temperatures obtained from Kopp-Neumann relation and X-

ray diffraction studies. Hence, it is concluded that the present 

values of θM for fcc phase Cu1-x-Znx alloys agree well with 

θH and θ obtained from Eg. 3 and Kopp-Neumann relation 

respectively. The values of vacancy formation energy (Ef) are 

estimated for Cu1-x-Znx alloys. 
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