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Abstract: The free particle solutions of the relativistic Dirac equation are characterized by plane waves with infinite 

uncertainty in position. However, many practical implementations of the solutions require a wave packet configuration, which 

can be utilized to represent a localized Dirac particle. Unlike the traditional wave packet generation method by superposing 

multiple plane waves, this study of ours presents an alternative approach towards obtaining a wave packet solution of a free 

particle relativistic Dirac equation. In this paper, we present Dirac’s free particle equation with a modification in the generalized 

momentum. The modification is achieved by coupling the momentum with a spatially varying logarithmic function, and this 

alteration does not affect the relativistic dispersion relation of the particle. Moreover, a solution of this modified Dirac equation is 

provided as well, which has been calculated using a trial wave function. The wave function solution is carried out in one 

dimension, where it behaves as a wave packet for a given ratio of the envelope parameter to the reduced Planck's constant greater 

than unity, where the envelope parameter regulates the width of the wave packet. The solution, being subject to this constraint, 

represents a bound particle with spin and a continuous energy spectrum. 
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1. Introduction 

A particle that is described by its phase space coordinates 

classically, can be analogously represented by a state vector in 

the quantum realm. That associated state vector would be 

localized around that particle’s phase space position. The 

evolution of the localized state vector would mimic the 

evolution of the particle in space and time. 

Working with a particle in a quantum mechanical 

framework is challenging since the localization of that particle 

is limited by Heisenberg’s uncertainty principle. 

In order to formulate a quantum state which would 

resemble a classical particle, it is very effective to make use of 

wave packets with finite widths. The wave packet treatment is 

particularly effective in practical implementations [1-5]. 

Numerous attempts to generate a wave packet solution on both 

relativistic and nonrelativistic regimes have been made over 

the years using various techniques [6-8]. The wave packet 

investigation of the relativistic Dirac equation is particularly 

important because it serves a major function in nanophysics 

[9-12]. 

The conventional method of constructing a wave packet is 

by linearly superposing multiple plane waves. As an 

alternative approach, some have endeavored to construct a 

single state wave packet on account of the nonlinearity 

imposed on a Rydberg electron by a linearly polarized 

electromagnetic field [13, 14] in a nonrelativistic arrangement. 

Furthermore, in the relativistic arena, an analogous 

investigation has been successfully conducted using the free 

particle Dirac wave equation [15] which uses coupling of a 

spatially varying potential with the generalized momentum. 

It is feasible to produce wave packet solutions of the free 

particle Dirac equation by performing a coupling with the 

generalized momentum in the Dirac Hamiltonian. The 

modification in the momentum does the job of packing the 

otherwise sinusoidal wave into a wave packet with finite 

width in position [15]. 

In this paper, we have presented a solution in the form of a 

wave packet for a Dirac wave equation with appropriate 

modification of the momentum operator. The modification has 
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been made by coupling the generalized momentum of the free 

particle Dirac Hamiltonian with a spatially varying 

logarithmic function. This modified Dirac equation, along 

with its properties, has been presented within the subsequent 

section followed by its solution in (1+1) freedom. 

2. Dirac Equation with a Modified 

Generalized Momentum 

The modified Dirac equation contains in its generalized 

momentum operator a spatially varying logarithmic function 

and for definite energy � thus takes the following form: 

 ��α��� ⋅ �	� − ��
���� + β����ψ���� = �ψ����       (1) 

Here, α��� = �0 σ���σ��� 0� 

and β = �� 00 −�� 

are Dirac 4x4 matrices, c is the speed of light in vacuum, 	� 
and �� are the momentum and position of the Dirac particle 

respectively and q serves as the envelope parameter which 

regulates the shape of the wave packet. The wave function ψ���� is a stationary energy eigenstate. 

The modified Dirac equation in the one-dimensional case in 

which the motion of a particle can be considered along 

z-direction with momentum 	� appears as ��α��	� − ��
��� + β����ψ��� = �ψ���      (2) 

The wave function ψ���  can be considered as a 

four-component column vector 

ψ��� = � ! � " #$                    (3) 

These four components operated by (2) produce the 

following four equations ��	� − �� ln �� " = �� −���� !           (4) ��	� − �� ln �� ! = �� + ���� "           (5) −��	� − �� ln �� # = �� − ���� �           (6) −��	� − �� ln �� � = �� + ���� #           (7) 

Now, (4) and (5) are coupled together, as are (6) and (7). It 

is convenient to derive equations for two of the component 

variables independent of the other two. Therefore, by taking  � =  # = 0, the following two equations can be obtained 

�	� − �� ln ���	� − �� ln �� ! = �'()( −�����  !   (8) 

�	� − �� ln ���	� − �� ln �� " = �'()( −�����  "   (9) 

Similarly, for  ! =  " = 0  two more equations are 

obtained for  � and  # similar to (8) and (9). 

Hence the four equations satisfied by the four components 

of the spinor in (3) are all identical. Taking into consideration 

the identicality of the four equations, it is reasonable to find 

the solution for only one equation, namely the one governing  ! which will apply to all of the four equations. 

Substituting the momentum operator 

	� → −iℏ ∂∂z 

gives the following partial differential equation, 

ℏ/ � 0(120�( + 2� ln � 0120� + /ℏ � ln� �  ! + 56 ! = 0   (10) 

where, 

56 = 1�ℏ8���� −����9 + 1 

3. Solution 

The method of solving the equation (10) involves choosing 

a suitable trial wave function solution to compose a localized 

wave packet containing an unknown spatially dependent 

function ϕ��� . Later, an equation governing the unknown ϕ���  is derived on condition that the trial wave function 

satisfy (10). Finally, putting the solution derived from that 

equation into the trial wave function gives the solution of the 

modified Dirac equation. 

A choice of trial wave function solution for the 

aforementioned equation can be considered in the form 

 !��� = ℏ/ϕ��� exp >− /ℏ ? ln � @�A        (11) 

The reasons for this choice are twofold. 

Firstly, the integral term within the exponential function 

brings forth a logarithmic term when differentiated with 

respect to z, while the minus sign in front assists it in 

simplifying the equation by eliminating identical terms. 

Secondly, the ℏ/�  multiple coupled with the �/ℏ  term 

within the exponential serves the purpose of reducing the 

equation down to its simplest form for ϕ���  by omitting 

those terms therein. 

The trial wave function in (11) acted on by (10) yields the 

following governing equation for ϕ���, 
� 0(C0�( + 5ϕ = 0                (12) 

where, 

5 = '(ℏ()( − D()(ℏ(                 (13) 

is the square of the wave number k. 

Equation (12) can be reduced to the Bessel equation of 

order 1 [16] which consequently produces ϕ��� = A√�G!H2√5�I + B√�K!H2√5�I      (14) 
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The function is a linear combination of both the first and 

second kind Bessel functions of order one, where L and M 

are arbitrary constants, G! and K! are the Bessel functions of 

the first and second kind respectively, both of order 1. 

4. Result 

The solution to the aforementioned Dirac equation is, 

therefore, 

 !��� = ℏ/ NA√�G!H2√5�I � B√�K!H2√5�IO exp >
 /, ? ln � @�A                      (15) 

The Dirac spinor in (3) assumes two independent forms for the two cases of spin up and down: 

ψ1P��� � N�1010$
,/ NA√�G!H2√5�I � B√�K!H2√5zIO exp >
 /, ? ln � @�A                   (16) 

ψRSTU��� � N�0101$
,/ NA√�G!H2√5zI � B√�K!H2√5�IO exp >
 /, ? ln � @�A                  (17) 

Equation (16) satisfies the case when  � �  # � 0 and (17) 

satisfies when  ! �  " � 0. N is the normalization factor in 

both equations. 

The normalization factor V can be determined by 

WψXψ@� � 1 

The solutions (16) and (17) represent a wave packet 

localized in position and is also an energy eigenstate with 

definite energy eigenvalue, 

� � YZ5,��� ����# � YZ[�,��� ����� 

where wave number [ � √5 which is evidently independent 

of the envelope parameter q. Hence, it is evident that the 

dispersion relation persists despite the modification in the 

Hamiltonian. The eigenvalue is a continuous energy spectrum 

with both positive and negative values. 

In the graphs of the general Bessel function solution :��� 
as shown in Figure 1, the envelope of the plane wave can be 

seen to diverge over the positive z-direction. The values of the 

constants A, B and K are chosen arbitrarily. 

 

Figure 1. \��� vs z graph for A = 2, B = 3 (a) K = 300 and (b) K = 3000. 

The wave function itself, on the other hand, exhibits the 

desired wave packet form Figures 2-4 as long as the envelope 

parameter is greater than the reduced Planck’s constant ,. 

However, Figure 5 shows that it tends to diverge for an 

envelope parameter smaller than ,. The graphs in figures 2-5 

have been plotted for the unnormalized top component of (16). 

The values of the envelope parameter q have been chosen as 

multiples of the reduced Planck’s constant ,. 

 

Figure 2.  !��� vs z graph for A = 2, B = 3 where � � , (a) K = 300 and (b) K = 3000. 
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Figure 3.  !��� vs z graph for A = 2, B = 3 where � � 10, (a) K = 300 and (b) K = 3000. 

 

Figure 4.  !��� vs z graph for A = 2, B = 3 where � � 100, (a) K = 300 and (b) K = 3000. 

 

Figure 5.  !��� vs z graph for A = 2, B = 3 where � � 0.1, and K = 3000. 

5. Discussion 

The foregoing investigation of the free particle Dirac 

equation modified by introducing a logarithmic term into the 

generalized momentum has yielded some intriguing results. 

Firstly, the function :���, which is a linear combination of 

Bessel functions of the first and second kind of order one, 

diverges infinitely as z increases Figure 1. Yet, the complete 

wave function is successfully enveloped into a wave packet. 

Secondly, the envelope parameter q acts as a deciding factor 

between a localized wave packet and diverging wave train for 

the solution depending on its value compared to the reduced 

Planck’s constant. For q greater than ,, the solutions generated 

in Figures 2-4 are wave packets localized in position whose 

width is regulated by the envelope parameter itself. 

Thirdly, the increase of q invokes a tremendous increase in 

the amplitude of the envelope of the wave packets at the same 

time, a reduction in their width. However, the envelope 

amplitude decreases with increasing squared wave number K. 

The envelope parameter q, as well as the constant K, affects 

the wavenumber. An increase in q results in a decrease in 

wavenumbers. The graphs Figures 2-4 also suggest that the 

wave packets show a dispersive tendency as distance 

increases. 

Even though the squared wavenumber K is independent of 

the envelope parameter, as can be seen from (13), the wave 

packets in the figures contain fewer wave numbers as q 

increases. This phenomenon occurs due to the fact that the 

width of the wave packets becomes smaller with larger values 

of q and, therefore, can accommodate lesser numbers of 

waves. 

Finally, as the envelope parameter assumes a value less than 

the reduced Planck’s constant, the solution turns into an 

indefinitely diverging plane wave mimicking somewhat the 

structure of the :��� vs z curve from Figure 1. 

6. Conclusion 

In this paper, we presented an alternative to the 

conventional wave packet generation technique by multiple 

plane wave superposition. We instead used a spatially varying 

logarithmic coupling with the generalized momentum in the 

free particle Dirac Hamiltonian and successfully demonstrated 

that wave packing is possible through a slight modification to 

the free particle Dirac equation. The logarithmic term 
�� ln �� introduced into the generalized momentum does the 

job of wave packing depending on the value of the envelope 

parameter q. 

The study is conducted on a (1+1) freedom considering the 

particle’s motion in the z-direction. The solutions are definite 

energy eigenstates with definite spins (1/2 or -1/2) as well. 

The energy eigenvalue of the Dirac equation has a continuous 

spectrum. 

The modification in the generalized momentum packs 
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continuous wave trains into a wave packet with a finite width 

in position depending on the �/, ratio. If the ratio takes on a 

value less than unity, the wave function diverges indefinitely 

rather than being enveloped into a packet. 

To conclude, we have presented in this article an 

unconventional method for producing a localized wave 

function from the otherwise unlocalized infinite wave trains 

utilizing the wave packing characteristic of the equation itself 

unlocked through simple modification. 
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